
Recognition of dynamic circle graphs

Christophe Crespelle∗ Emeric Gioan‡ Christophe Paul§

May 28, 2014

Abstract

A circle graph is the intersection graph of a set of chords in a circle, this geometric repre-
sentation of the graph being called a chord diagram. A given circle graph may be represented
by many different chord diagrams but it is well-known that the set of all possible diagrams
can be represented in O(n) space by using the split decomposition. In this paper, we propose
an O(n)-time algorithm that, given a n-vertex circle graph, maintains the split-decomposition-
based representation of a circle graph under vertex deletion and vertex insertion (or asserts that
the resulting graph is not circle).

1 Introduction

A circle graph is the intersection graph of a set of chords in a circle, also called chord diagram:
the vertices corresponds to the chords and two vertices are adjacent if and only if their chords
intersect. First introduced in the early 1970s as the name alternance graphs [7], they have since
then been extensively studied, especially in the context of isotropic systems [1, 2] and more recently
of rank-width and vertex-minor theory [9]. After a series of polynomial time circle graph recognition
algorithm [1, 8], a quadratic algorithm algorithm appeared in mid 1990s [17]. Very recently, an
almost linear time algorithm appeared in [11] breaking for the first time the quadratic barrier.
Most of these algorithms relies on the split decomposition [6] as circle graphs can be characterized
through their split decomposition.

In this paper, we consider a dynamic variant of the recognition problem: given a circle graph G
we want to test whether adding a new vertex to G or deleting an existent vertex from G leads to
a new circle graph. We provide an O(n)-time algorithm to solve this question. The algorithm not
only decides whether the modified graph is circle but also maintain a split decomposition based
representation of all the possible chord diagrams of the input graph. It can be observed that
as long as the split decomposition is maintained, the O(n)-time complexity bound is optimal as
removing or adding a unique vertex may generate O(n) changes in the split decomposition of the
input graph. But still, such a complexity is competitive with quadratic time complexity recognition
algorithm of [17]. This problem, known as the dynamic recognition (or representation) problem,
has been considered for a large number of graph classes, including subclasses of circle graphs such
as distance hereditary graphs and cographs [10, 15] or permutation graphs [5], but also proper
interval graphs [13], interval graphs [4], chordal graphs [14] and many others.

∗Université Claude Bernard Lyon 1, DANTE/INRIA, LIP UMR CNRS 5668, ENS de Lyon, Université de Lyon -
christophe.crespelle@inria.fr
‡LIRMM, CNRS - Université Montpellier 2 - emeric.gioan@lirmm.fr
§LIRMM, CNRS - Université Montpellier 2 - christophe.paul@lirmm.fr

1

2 Preliminaries

In this paper, we are dealing with connected, simple and loopless graphs. For a graph G = (V,E)
we denote |V | = n. For a vertex x ∈ V , we denote NG(x) the neighborhood of x in G. Let S be
a subset of vertices of V . The graph induced on S is signified by G[S] and the neighborhood of S
is NG(S) = (∪x∈SN(x)) \ S. The graph G + (x, S) is obtained from G by adding a new vertex x
adjacent to S. We denote by G− x the graph G[V \ {x}] resulting from the deletion of x ∈ V . A
clique on n vertices, denoted Kn, is a graph containing an edge between every pair of vertices. A
star on n > 3 vertices, denoted Sn, is a connected graph containing a vertex, called centre, such
that every edge is incident to the centre.

a1

a2

b2

b1

d1

d2

c1c2

q q1 2

C

e2e1

f 2

f1

g1

g2

h2

h1

q’

q’

2

1

C’

circle-
join

circle-
split

a1

a2

b2

b1

d1

d2

c1c2

e2e1

f 2

f1

g1

g2

h2

h1

q

a

b

c d

G

q’

e
f

g
h

G’

join split

a

b

c
d

e

f

g

h

Figure 1: Split and join operations on chord diagrams (left) and GLTs of the same graphs (right).

Split decomposition. A bipartition (A,B) of the vertex set is trivial if one of A or B is empty
or a singleton. A split of a graph G = (V,E) is a non-trivial bipartition (A,B) of V such that
every vertex in A′ = N(B) is universal to B′ = N(A). The sets A′ and B′ are called the frontiers
of the split. A graph not containing a split is called prime. Cliques and stars are called degenerate
since every non-trivial bipartition of their vertices is a split. Using the splits, one can recursively
decompose an input graph into a set of disjoint graphs {G1, . . . Gk}, called split components, each
of which is either prime or degenerate. There are two cases: if G is prime or degenerate, then
return the set {G}; if G is neither prime nor degenerate, it contains a split (A,B), with frontiers
A′ and B′. The split components of G is then the union of the split components of the graphs
G[A] + (a,A′) and G[B] + (b, B′), where a and b are new vertices, called markers. Observe that
the split decomposition process naturally defines a decomposition tree whose nodes are the split
components. It can be represented as the so-called skeleton graph (see [3] for example). Here, we
follow the framework of graph-labelled trees introduced in [10, 12]:

A graph-labelled tree (GLT) is a pair (T,F), where T is a tree and F a set of graphs, such that
each node u of T is labelled by the graph G(u) ∈ F , and there exists a bijection ρu between the edges
of T incident to u and the vertices of G(u). The vertices of G(u) are called marker vertices, and the
edges between marker vertices in G(u) are called label-edges. We will abusively consider a leaf ` of
T as a marker vertex (of a single vertex labelled-graph). The marker vertices ρu(e) and ρv(e) of the
tree-edge e = uv are called the extremities of e. Let (T,F) be a GLT. The marker vertices q and
q′ are accessible from one another if there is a sequence Π of marker vertices such that every two
consecutive elements of Π are either the vertices of a label-edge or the extremities of a tree-edge;
and the edges thus defined alternate between tree-edges and label-edges. The accessibility graph of
(T,F), denoted Gr(T,F), is the graph whose vertices are the leaves of T , with an edge between

2

two distinct leaves ` and `′ if and only if they are accessible from one another. Conversely, we may
say that (T,F) is a GLT of Gr(T,F).

Let us observe that every tree edge e of a GLT (T,F) defines a split (A,B) of the accessibility
graph Gr(T,F) where A and B respectively contains the vertices corresponding to the leaves of
the two connected components of T − e. Naturally a graph-label in a GLT containing a split can
be transformed into two adjacent graph-labels (split operation), and conversely (join operation),
preserving the accessibility graph of the GLT, see Figure 1. Cunningham [6] showed that every
graph admits a canonical split decomposition tree. In term of GLT’s, this translates as follows:

Theorem 2.1. [6, 10, 12] Let G be a connected graph. There exist a unique GLT (T,F) whose labels
are either prime or degenerate, having a minimal number of nodes and such that G = Gr(T,F).
This GLT is called the split-tree of G and denoted ST (G).

Circle graphs. It is well-known that a graph is a circle graph if and only if all its split components
(graph-labels of its GLT) are circle graphs [1]. As a consequence, because cliques and stars are circle
graphs, the recognition of circle graphs can be reduced to the recognition of prime circle graphs.
That was the approach developed in [16, 17]. Every circle graph G = (V,E) has a representation
as a chord diagram, but such a representation is not unique. Indeed, as witness by examples of
cliques, a circle graph may have exponentially many distinct chord diagrams. However, it is known
that a prime circle graph has a unique chord diagram (up to mirror) [1, 3]. We call augmented split
tree of a circle graph its split tree together with a chord diagram of its labels. Figure 1 illustrates
split and join operations on chord diagrams.

3 Our result

Our original result is stated in the following theorem.

Theorem 3.1. Given the augmented split tree ST (G) of a connected circle graph G = (V,E), in
O(n)-time, we can :
• compute the augmented split trees of every connected component of G− x;
• decide if G′ = G+ (x, S), with S ⊆ V , is circle and if so compute its augmented split tree.

Below we provide a brief description of the key ingredients of its proof. The construction consists
in dealing with prime circle graphs for vertex insertion and deletion, and incorporating this case in
the general dynamic construction from [12, Section 4], which provides a combinatorial description
of how the split tree ST (G+ (x, S)) is obtained from the split tree ST (G), and conversely, with S
being a subset of the vertices of G. Technically, the specificity of prime circle graphs in terms of
split tree updates is given by the following crucial lemma.

Lemma 3.2. Let x be a vertex of a prime circle graph G = (V,E). The split tree ST (G− x) is a
caterpillar and every pair (A,B) and (C,D) of splits of G− x is nested, that is A ⊂ C or C ⊂ A.

Vertex deletion. Removing a vertex x from a circle graph G always yields a new circle graph
G′ = G− x. Removing the leaf `x and its opposite marker vertex qu in G(u) (where u is the node
adjacent to `x) results in a GLT of G − x from which we can compute ST (G − x). The difficult
case is when G(u) is a prime graph because then the removal of qu may generate new splits to be
identified in O(n)-time. Computing ST (G− x) is performed by searching the chord diagram of G
in order to identify in O(n)-time a maximal set of nested splits.

3

Vertex insertion. As for the deletion, the difficult case for vertex insertion is when G + (x, S)
is a prime graph. This case can be detected by a simple O(n)-time marking process of ST (G) with
respect to S described in [12]. The previous lemma is also useful in that situation, as it implies that
for G+ (x, S) to be a circle graph, the subtree T (S) of ST (G) spanned by the leaves corresponding
to S has to be a caterpillar. If this is not the case, then insertion algorithm can directly stop. Let
us assume that T (S) is indeed a caterpillar. Basically, the insertion algorithm amounts to perform
a series of join operations to shrink ST (G) in a single node GLT and then insert in the associated
chord diagram C a new chord cx representing vertex x. As a join operation can be implemented
using chord diagrams, C results from the series or performed join operations. Those join operations,
maintaining chord diagrams as well, can be done in linear time. As the total size of the augmented
ST (G) in linear in |V |, it follows that shrinking ST (G) into a single node GLT requires O(n)-time.
Now observe that as G+(x, S) is prime, it has a unique chord diagram. It follows that if G+(x, S)
is a circle graph, there is a unique way to insert cx in C. Again testing the insertion can be achieved
in O(n) time.

References

[1] A. Bouchet. Reducing prime graphs and recognizing circle graphs. Combinatorica, 7:243–254, 1987.

[2] A. Bouchet. Circle graph obstructions. Journal of Combinatorial Theory Series B, 60:107–144, 1994.

[3] B. Courcelle. Circle graphs and monadic second-order logic. Journal of Applied Logic, 6:416–442, 2008.

[4] C. Crespelle. Fully dynamic representation of interval graphs. In International Workshop on Graph
Theoretical Concepts in Computer Science (WG), 2009.

[5] C. Crespelle and C. Paul. Fully dynamic algorithm for recognition and modular decomposition of
permutation graphs. Algorithmica, 58(2):405–432, 2010.

[6] W.H. Cunningham and J. Edmonds. A combinatorial decomposition theory. Canadian Journal of
Mathematics, 32(3):734–765, 1980.

[7] S. Even and A. Itai. Queues, stacks and graphs. Theory of Machines and Computations, pages 71–86,
1971.

[8] C.P. Gabor, W.L. Hsu, and K.J. Suppovit. Recognizing circle graphs in polynomial time. Journal of
ACM, 36:435–473, 1989.

[9] J. Geelen and S.I. Oum. Circle graph obstructions under pivoting. Journal of Graph Theory, 2008.

[10] E. Gioan and C. Paul. Split decomposition and graph-labelled trees: Characterizations and fully
dynamic algorithms for totally decomposable graphs. Discrete Applied Mathematics, 160(6):708–733,
2012.

[11] E. Gioan, C. Paul, M. Tedder, and D. Corneil. Practical and efficient circle graph recognition. Algo-
rithmica, 2013.

[12] E. Gioan, C. Paul, M. Tedder, and D. Corneil. Practical and efficient split-decomposition via graph-
labelled trees. Algorithmica, 2013.

[13] P. Hell, R. Shamir, and R. Sharan. A fully dynamic algorithm for recognizing and representing proper
interval graphs. SIAM Journal on Computing, 31(1):289–305, 2002.

[14] L. Ibarra. Fully dynamic algorithms for chordal graphs. In Annual ACM-SIAM symposium on Discrete
algorithms (SODA), pages 923–924, 1999.

[15] R. Shamir and R. Sharan. A fully dynamic algorithm for modular decomposition and recognition of
cographs. Discrete Applied Mathematics, 136(2-3):329–340, 2004.

[16] J. Spinrad. Prime testing for the split decomposition of a graph. SIAM Journal on Discrete Mathe-
matics, 2(4):590–599, 1989.

[17] J. Spinrad. Recognition of circle graphs. Journal of Algorithms, 16:264–282, 1994.

4

